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The results of Ursell(l964) are confirmed by proving that there are no additional 
contributions to Ursell’s integral from singularities of the integrand at infinity. 
The method consists of proving that the asymptotic expansion of a force co- 
efficient A ( N )  is uniformly valid in a finite sector of the complex N-plane. This 
in turn requires that the kernel of an integral equation remains small in this 
sector. 

1. Introduction 
Ursell (1964) considers the problem of a floating circular cylinder which is 

displaced vertically, held until the water is again at rest, and then released. The 
problem is solved by a Fourier transform and the result expressed as a Fourier 
integral with a force coefficient A(u) in the integrand. The behaviour of the solu- 
tion depends on the singularities of this function. Ursell shows that R(u) has a 
branch point at u = 0, and gives a solution to the problem on the assumption 
that A(%) and its first few derivatives do not oscillate rapidly at infinity. The 
purpose of the present paper is to establish that this assumption is true. The 
method we use is that indicated by Ursell of showing that A(u) has the same 
asymptotic expansion for large IuI throughout some finite sector of the complex 
u-plane, - E < arg u < E .  The path of the Fourier integral can then be deformed 
into the lower half of the u-plane for large IuI and the resulting contribution is 
exponentially small. 

The asymptotic expansion of Afzc) for large real u has been found in an earlier 
paper (Ursell 1953), from the solution of an integral equation. The method of 
solution of the integral equation depends on the kernel being small for large 
N = u 2 ,  so that an iterative procedure can be used. The integral equation method 
is much improved in a later paper (Ursell1961), and for the most part the presenb 
work follows this paper. Ursell’s papers (1953, 1961 and 1964) will be referred 
to as U 1, U2 and U 3  respectively. 

It is easily seen from U 1 that the force coefficient R ( N )  will have a uniform 
asymptotic expansion for - E < arg N < E if the kernel of the integral equation 
from which it is derived remains small for complex N in this sector, since then the 
solution of the integral equations will be unchanged. Thus the problem of the 
present paper reduces to  showing that the integral equation of U 1  can be re- 
placed by a modified equation in which the kernel does remain small in this 
sector. 
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2. The kernel of the integral equation 
The integral equation of U 1 comes from consideration of the forced motion 

produced by the vertical oscillations of a circular cylinder. The cylinder is of 
radius a, with the mean position of its axis in the undisturbed free surface, and 
the oscillation is such that the whole motion is proportional to eciUt and suffi- 
ciently small to allow linearization of the boundary conditions. By using Green’s 
theorem Ursell finds an integral equation, U 1  (3.3), for the velocity potential 
$(a), -4. < a < ?pi-. The kernel involves a derivative with respect to r,  where 
z = r sin 8, y = r cos 8, of the function 

in which the path of integration is indented to pass below the pole at k = K .  
Here Ka = a2a/g = N ;  K ,  N are large. Our object is to show that the kernel re- 
mains small when K has an imaginary part K = K,+iK,; N = N,+iN;,; K,, 
iV, > 0. As we intend to follow the methods of U2 we use the fact that $(a) is 
even and rewrite the integral in Ursell’s equation with limits - in to 3.. 

As it stands the iterative procedure cannot be used even when K is real. This 
is because when the points (a  sin 8, a cos 8 )  and (a  sin a, a cos a)  are on opposite 
faces of the cylinder the kernel is no longer small. Physically waves are generated 
by a simple oscillating source at (a sin a, a cos a) and the large terms represent 
waves which have travelled through the centre of the cylinder; this is, of course, 
impossible in the real problem. This difficulty is removed in U2 by modifying 
the original Green’s function by subtracting from it suitable combinations of 
simple source and doublet solutions S(Kx,  Ky) and D(Kx, Ky) .  In  fact D is not 
strictly needed in our problem and only S terms are used in U 1, but we prefer to 
retain the form used in U2, where S and D were derived in appendix 1. 

Following U2 (pp. 644-5) we find that the wave terms are cancelled if G, is 
replaced by 

g1 = G, - +(S+ isgnaD) exp { - N cos a+ iNIsina[}, (2) 

where sgn a = f 1 according as a 0. Note that our 8, a are defined as in U 1, 
and that ‘sin ’ and ‘ cos ’ in U 2 are replaced by ‘ cos ’ and ‘sin ’ here. 

We now write the cosine in G,  as a sum of exponentials and rotate the contours 
in the two integrals to obtain integrals along the positive and negative halves of 
the imaginary k-axis respectively, giving 

G,@, y; 6, 7) = - 2.i exp [ -K(y + 7) + iKlx- 611 

- 2 m R  IKl(Y+rl), pq I.-6]), (3) 
where 

dv, (4) 
exp [ - v(p - ih)] exp [ - w(p + ih)] F ( R ;  h,p) = ii - d v - i i  

and li’ = K/IKI. This is following U 2, appendix A, but the definition of the func- 
tion E’ is modified to allow for K being complex. When K is real, l? = 1 and P is 
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the same as in U2 (A 1.8). A summation which appears in the definition of S 
comes from the asymptotic expansion of F for large h2 + p2 and is easily seen to 
be unchanged, when K is complex, from that given in U2. Now we can write 
down the new kernel as + $Fa), where 

lKl (rcos8+acosa), (KI Jrsin8-asinal)} (5) 

@2) = P exp [iNl sin 8 - sin a]] + Q exp [in{ I sin 81 + Isin .I}] + R exp [iNI sin all; 

(6) 
P = 2nN exp [ - N(cos 8 + cos a)] (i cos8 + sin 8 sgn (sin 8- sina)); (7) 

Q = nNexp[-N(cos8+cosa)](-1+sgn8sgna)(icos8+~sin8~); ( 8 )  

R = IK(y; lzil 1x1) 
l3 m! (-i)" i" isgna a 

-*i - 
m=O 

The summations in R come from S and D, but we have retained the series 
form of U2 (A 1.9) rather than that of UZ (A 1.10). The upper limit of summa- 
tion, s, can take any finite even value, although the series is in fact divergent; it 
must be even in order to satisfy the surface boundary condition. Note that, when 
sgn 8 = - sgn a, the P and Q wave terms cancel, and when sgn 8 = sgn a, Q = 0. 

3. Bounds for the kernel 
To find bounds for this kernel when N is large we shall consider three cases 

separately: (i) when sgn 8 = - sgn a;  (ii) R(2) when sgn 8 = sgn a; and (iii) @I). 
(i) Here @2) is simply the R term. In  the series appearing in (9) we have yet to 

specify the value of the upper limit s. As just remarked the series is derived from 
the asymptotic expansion of the function F ( 2 ;  A, p) for large h2 +p2.  The method 
used is Watson's lemma (Watson 1944, p. 236) which involves expansion inside 
the integral sign and integrating term by term. In  this section to find a bound for 
R for large IKI we rewrite the summations inside the integral. Thus 

R = 

(10) 

The summations here are simple geometric progressions for which we can write 
down the sum in closed form, so the first integral is 
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The second integral is obtained from this by changing the sign of i except in 2. 
The integral can now be approximated for large IKI by the method of steepest 
descents, allowing the possibility that s may be O( IKI ) since we have not yet fixed 
its value. It turns out that the path of steepest descent is a straight line through 
v = 0 making an angle in- 1/31 with the real axis. (If in diverting the contour 
the pole a t  iv = - is encountered the contour must be indented to pass the pole 
on the side nearer to the real axis, since its contribution has already been added 
in.) Standard application of the method then gives as the first term in the 
asymptotic expansion of (1  2) 

Higher terms can also be calculated, but all contain the factor e-5. Similarly, 
6he second integral in (10) also has this factor in its asymptotic expansion, and 
the further differentiations involved in calculating R leave the e-s unchanged. 
Thus with N =XI + ih?, the $3,) part of the kernel contains the factor 

exp [ -s-N,cosa-N,Isinal +i(realfunction)] (14) 

and no other exponentials. If s were small and N, < 0 this would be very large 
near to  a = &T. However, we have allowed s to be O(lN1) and we are at liberty 
to  choose its actual value; if we choose s = [lNl]+ 1, or [IN1]+2 where [ I N / ]  is 
the greatest integer 6 IN1 and the 1 or 2 is taken so as to make s even, 932) is 
exponentially small for all N .  

(ii) When sgn8 = sgna, the R term can be made exponentially small in the 
same way, Q = 0, and we are left with the P term. The exponential factor in this 
term can be expressed as 

exp [ - N -  2 cos __ c o s y  (1 +tans  tan % 1 )  +i(real function)], (15) 
2 

where we have written N, = &tans. But ltani(O-a)I < 1 since 18-al < in 
here, and therefore, if - 1 < tans  < 03, i.e. -in < e < &r,thisfactorisexponen- 
tially small for large Nl ( > 0) and hence for large IN\. Thus if E < 0 we must specify 
- N, < N,, but with this restriction Qi2) is exponentially small. 

(iii) To find bounds for 9(1) we follow U2, appendix 2. Writing 8* = i n -8 ,  
a* = in - a, so that 8*, a* are the 8, a of U 2, the theory follows through without 
modifications except that the known result U2 (A 2.18) has to be extended to the 
integral 

where k' = 1 + i tan E ,  s = arg K ,  and the path passes below the pole. Substitut- 
ing k = k'l and rotating the contour back to the real axis, we have 

-€ exp [ - (lc'z)R exp (ix)] I = /o~exP[-(k'z)~l 1-  1 dl+ R-tw lim lo Reix- 1 - iReixdX (17) 

= principal value dl + ni exp [ - k'z] 
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provided that 
- € < ~ < < , € > O  
o < x <  - S , € < O  

I € +  argz+X( < in for 

Since we have already specified e > -in we can without any real loss put 
< an. Then this condition will be satisfied if largxl < an. With this restriction 

T = - exp [ - (k’z)]  In (k’z )  + (a regular function of k’x), (20) 

following US, (A 2.18), and the remainder of this section follows from US. 
Thus the kernel remains bounded when N is complex provided that 

IargNl < in. 

The same bounds are available as those used in US, and the iterative solution of 
the integral equation may proceed as before. It follows that the asymptotic 
expansion of A ( N )  is uniformly valid for IargNl < &r and hence the results of 
U 3 are confirmed. 

The author is indebted to Professor Ursell for helpful discussions of this 
problem. 
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